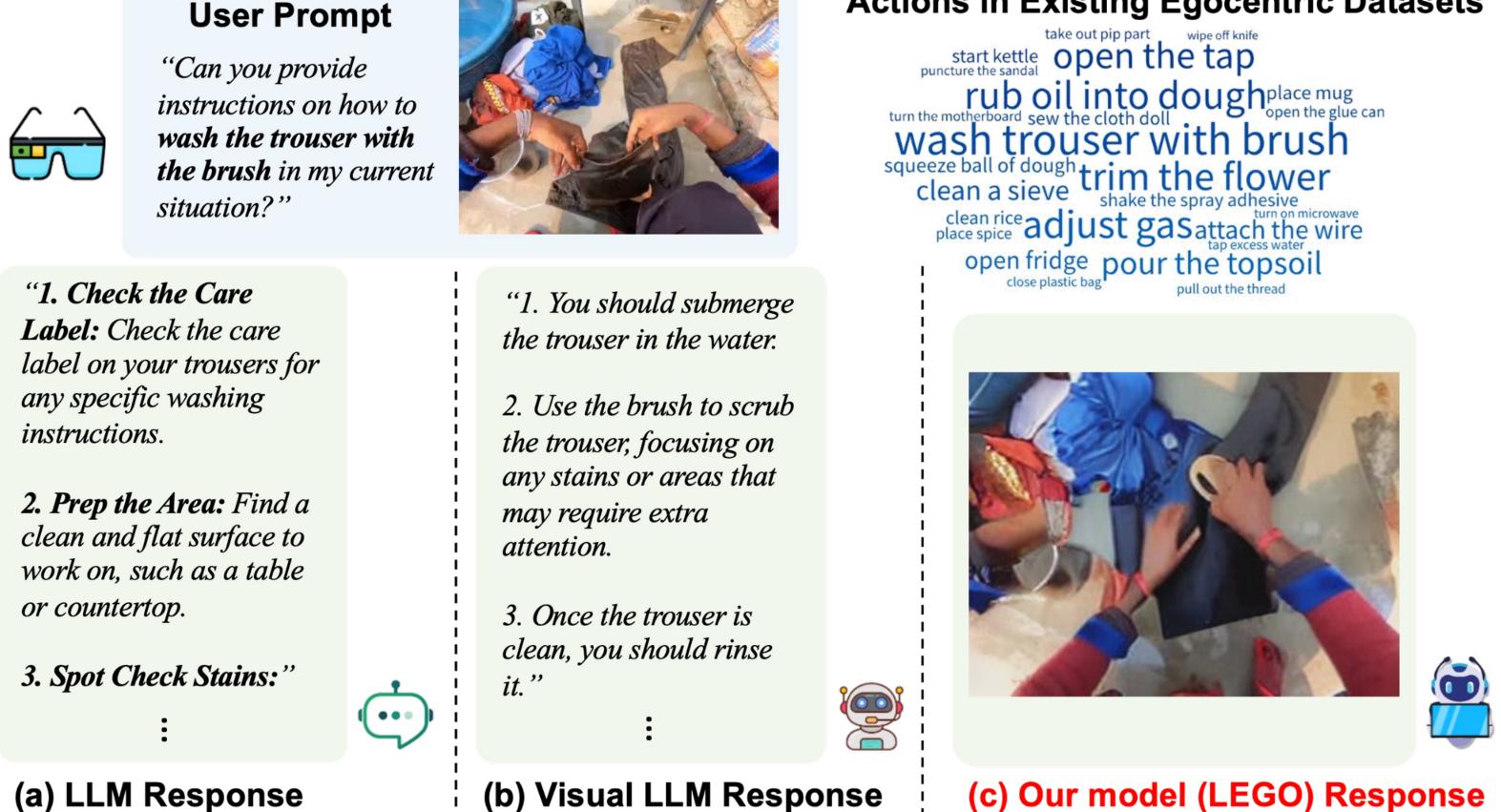
LEGO: Learning EGOcentric Action Frame Generation via Visual Instruction Tuning Bolin Lai^{1,2} Xiaoliang Dai¹ Lawrence Chen¹ Guan Pang¹ Miao Liu¹ James M. Rehg³ **Meta Georgia** Tech ²Georgia Tech ³UIUC ¹GenAl, Meta

Motivation



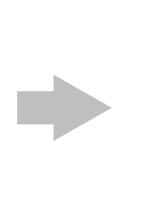
When a user asks for instructions on a task:

- *LLM* -- the answer is too generic and verbose, which is hard to follow.
- Visual LLM -- she still faces the challenge of parsing a written description.
- LEGO (our method) -- generates an image that provides visual guidance exactly in her situation from the egocentric viewpoint.

We thus propose a new task -- Egocentric Action Frame Generation, **Input:** (1) User query of how to perform an action, (2) An image of current situation before an action happens. Output: An image in which the action is being performed.

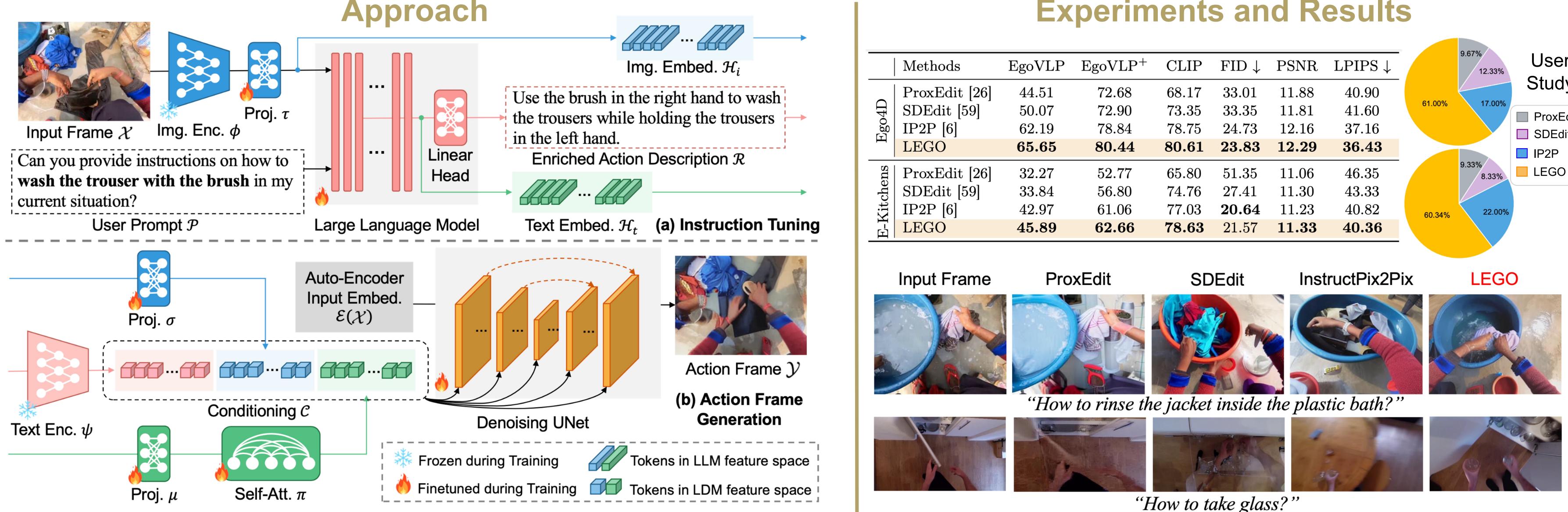
Challenges

- Action labels are short of necessary details for action frame generation.
- The off-the-shelf diffusion models are limited in action understanding due to domain gap.



- Enriching the action labels with LLM via visual instruction tuning.
- Leveraging finetuned LLM embeddings to improve egocentric action frame generation.

Actions in Existing Egocentric Datasets

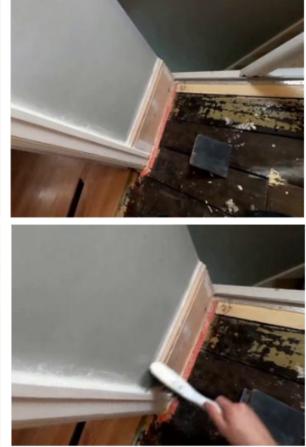


LEGO consists of two key components:

- Visual Instruction Tuning -- We finetune an LLM to generate detailed action descriptions which include information such as hands and spatial locations.
- them to a diffusion model as additional conditions to mitigate the domain gap.

U. Input Frame

"cut a portion of clay "brush a wood "put tray in oven" "close container" mix with both hands" with a brush"



Action Frame Generation -- We project image and text features from LLM to LDM space, and input

"take soy milk"

"Can you provide instructions on how to {action} in my current situation?'

Contact

Experiments and Results

_							9.67%
	EgoVLP	EgoVLP^+	CLIP	FID \downarrow	PSNR	$\mathrm{LPIPS}\downarrow$	^{9.67%} User
	44.51	72.68	68.17	33.01	11.88	40.90	61.00% 17.00% Study
	50.07	72.90	73.35	33.35	11.81	41.60	ProxEdit
	62.19	78.84	78.75	24.73	12.16	37.16	SDEdit
	65.65	80.44	80.61	23.83	12.29	36.43	IP2P
	32.27	52.77	65.80	51.35	11.06	46.35	9.33% LEGO
	33.84	56.80	74.76	27.41	11.30	43.33	
	42.97	61.06	77.03	20.64	11.23	40.82	60.34% 22.00%
	45.89	62.66	78.63	21.57	11.33	40.36	

Generating various actions in the same contexts:

"open microwave"

"pick up bowl"

